7206 - 树的重心

通过次数

3

提交次数

13

时间限制 : 1 秒
内存限制 : 128 MB

小简单正在学习离散数学,今天的内容是图论基础,在课上他做了如下两条笔记:

  1. 一个大小为 n 的树由 n 个结点与 n−1 条无向边构成,且满足任意两个结点间有且仅有一条简单路径。在树中删去一个结点及与它关联的边,树将分裂为若干个子树;而在树中删去一条边(保留关联结点,下同),树将分裂为恰好两个子树。
  2. 对于一个大小为 n 的树与任意一个树中结点 c,称 c 是该树的重心当且仅当在树中删去 c 及与它关联的边后,分裂出的所有子树的大小均不超过⌊n/2⌋(其中⌊x⌋ 是下取整函数)。对于包含至少一个结点的树,它的重心只可能有 1 或 2 个。 课后老师给出了一个大小为 n 的树 S,树中结点从 1∼n 编号。小简单的课后作业是求出 S 单独删去每条边后,分裂出的两个子树的重心编号和之和。即: 上式中,E 表示树 S 的边集, (u,v) 表示一条连接 u 号点和 v 号点的边。S′u 与 S′v 分别表示树 S 删去边 (u,v) 后,u 号点与 v 号点所在的被分裂出的子树。 小简单觉得作业并不简单,只好向你求助,请你教教他。

输入

本题包含多组测试数据 第一行一个整数 T 表示数据组数。 接下来依次给出每组输入数据,对于每组数据: 第一行一个整数 n 表示树 S 的大小。 接下来 n−1 行,每行两个以空格分隔的整数 ui,vi,表示树中的一条边 (ui,vi)。

输出

共T行,每行一个整数,第 i 行的整数表示:第 i 组数据给出的树单独删去每条边后,分裂出的两个子树的重心编号和之和。

样例

输入

2
5
1 2
2 3
2 4
3 5
7
1 2
1 3
1 4
3 5
3 6
6 7

输出

32
56

提示

【样例 1 解释】 对于第一组数据: 删去边 (1,2),1 号点所在子树重心编号为 {1},2 号点所在子树重心编号为 {2,3}。 删去边 (2,3),2 号点所在子树重心编号为 {2},3 号点所在子树重心编号为 {3,5}。 删去边 (2,4),2 号点所在子树重心编号为 {2,3},4 号点所在子树重心编号为 {4}。 删去边 (3,5),3 号点所在子树重心编号为 {2},5 号点所在子树重心编号为 {5}。 因此答案为 1+2+3+2+3+5+2+3+4+2+5=32。

来源

CSP