9300 - 战略游戏
时间限制 : 1 秒
内存限制 : 128 MB
省选临近,放飞自我的小 Q 无心刷题,于是怂恿小 C 和他一起颓废,玩起了一款战略游戏。
这款战略游戏的地图由 n 个城市以及 m 条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着道路走到任意其他城市。
现在小 C 已经占领了其中至少两个城市,小 Q 可以摧毁一个小 C 没占领的城市,同时摧毁所有连接这个城市的道路。只要在摧毁这个城市之后能够找到某两个小 C 占领的城市 u 和 v,使得从 u 出发沿着道路无论如何都不能走到 v,那么小 Q 就能赢下这一局游戏。
小 Q 和小 C 一共进行了 q 局游戏,每一局游戏会给出小 C 占领的城市集合 S,你需要帮小 Q 数出有多少个城市在他摧毁之后能够让他赢下这一局游戏。
输入
第一行包含一个正整数 T,表示测试数据的组数。
对于每组测试数据:
第一行是两个整数 n 和 m ,表示地图的城市数和道路数。
接下来 m 行,每行包含两个整数 u 和 v (1 \le u < v \le n),表示第 u 个城市和第 v 个城市之间有一条道路,同一对城市之间可能有多条道路连接。
第 m + 1 是一个整数 q,表示游戏的局数,
接下来 q 行,每行先给出一个整数 |S| (2 \le |S| \le n),表示小 C 占领的城市数量x,然后给出 |S| 个整数 (1 \le S_1 < S_2 < ... < S_x \leq n),表示小 C 占领的城市。
输出
对于每一局游戏,输出一行,包含一个整数,表示这一局游戏中有多少个城市在小 Q 摧毁之后能够让他赢下这一局游戏。
样例
输入
2 7 6 1 2 1 3 2 4 2 5 3 6 3 7 3 2 1 2 3 2 3 4 4 4 5 6 7 6 6 1 2 1 3 2 3 1 4 2 5 3 6 4 3 1 2 3 3 1 2 6 3 1 5 6 3 4 5 6
输出
0 1 3 0 1 2 3
提示
说明/提示
- 1 \le T \le 10;
- 2 \le n \le 10^5 且 n - 1 \le m \le 2\times 10 ^ 5;
- 1 \le q \le 10^5;
- 对于每组测试数据,有 \sum|S| \le 2 \times 10^5。
来源
山东省选