9275 - 最小费用流

通过次数

4

提交次数

9

时间限制 : 1 秒
内存限制 : 128 MB

给定一个图,每条边有容量和费用,使用每条边的单位流量需要支付特定的费用。给定源点 1 和汇点 n,求图的最大流和最大流需要支付的最小费用。

输入

第一行两个整数 n、m,表示有 n 个点 m 条边。

从第二行开始的之后 m 行,每行四个整数 s_it_ic_iw_i 表示一条从 s_it_i 的边,容量为 c_i,单位流量需要支付的费用为 w_i

输出

一行两个整数,分别表示最大流和最大流需要支付的最小费用。

样例如同所示,最小费用流为:
1->4 流量20 费用20 × 3 =60;
1->2->4 流量20 费用20×(2+1)=60;
1->2->3->4 流量10 费用10×(2+9+5)=140;;
最大流量为20+20+10=50;总费用为60+60+140=280;

样例

输入

4 5
1 2 30 2
1 4 20 3
2 4 20 1
2 3 30 9
3 4 40 5

输出

50 280

提示

1 \leq n \leq 400, 0 \leq m \leq 15000, w_i\geq 0,保证输入数据、中间结果以及答案在 32 位有符号整数范围内。

来源

模板