给定一个平面上 条水平直线和 条垂直直线,它们相交形成 行 列的网格,从上到下第 条水平直线和从左到右第 条垂直直线之间的交点称为格点 。网格中任意两个水平或垂直相邻的格点之间的线段称为一条边,每条边有一个非负整数边权。
进行 次询问,每次询问形式如下:
给出 ( 次询问的 可能不同)个附加点,每个附加点位于一条从网格边缘向外出发的射线上。所有从网格边缘向外出发的射线按左上-右上-右下-左下-左上的顺序依次编号为 到 ,如下图:
对于每次询问,不同附加点所在的射线互不相同。每个附加点和最近的格点之间的线段也称为一条边,也有非负整数边权(注意,在角上的格点有可能和两个附加点同时相连)。 给定每个附加点的颜色(黑色或者白色),请你将网格内每个格点的颜色染成黑白二者之一,并使得所有两端颜色不同的边的边权和最小。请输出这个最小的边权和。
第一行,三个正整数 ,分别表示水平、垂直直线的数量,以及询问次数。
接下来 行,每行 个非负整数。其中第 行的第 个非负整数 表示 和 间的边权。
接下来 行,每行 个非负整数。其中第 行的第 个非负整数 表示 和 间的边权。
接下来依次输入 组询问。第 组询问开头为一行一个正整数 表示这次询问附加点的总数。接下来 $kij{x 3}{i, j}, p{i, j}, t{i, j}j01p_{i, j}$ 互不相同。
输出 T 行,第 i 行输出一个非负整数,表示第 i 次询问染色之后两端颜色不同的边权和的最小值。
2 3 1 9 4 7 3 8 10 5 2 19 3 1 17 9 0
12
【样例 1 解释】
最优方案:(1,3),(1,2),(2,3) 为黑色;(1,1),(2,1),(2,2) 为白色。
【样例 2】
见选手目录下的 traffic/traffic2.in 与 traffic/traffic2.ans。
【样例 3】
见选手目录下的 traffic/traffic3.in 与 traffic/traffic3.ans。
【样例 4】
见选手目录下的 traffic/traffic4.in 与 traffic/traffic4.ans。
【样例 5】
见选手目录下的 traffic/traffic5.in 与 traffic/traffic5.ans。
【数据范围】
对于所有数据,,,$1 \le ki \le \min { 2 (n + m), 50 }1 \le \sum{i = 1}^{T} k_i \le 500 \le x \le {10}^61 \le p \le 2 (n + m)t \in { 0, 1 }$。
保证对于每个 , 互不相同。
NOIP