设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n为节点编号。每个节点都有一个分数(均为正整数),记第j个节点的分数为d_j,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:
subtree的左子树的加分×subtree的右子树的加分+subtree的根的分数
若某个子树为主,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。
试求一棵符合中序遍历为(1,2,3,...,n)且加分最高的二叉树tree。要求输出:
(1)tree的最高加分
(2)tree的前序遍历
第1行:一个整数n(n<30),为节点个数。
第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。
第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。
第2行:n个用空格隔开的整数,为该树的前序遍历。
5 5 7 1 2 10
145 3 1 2 4 5
NOIP