6056 - 合并果子(NOIP2004)

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定

把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所

有的果子经过 n-1 次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体

力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重

量都为 1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的

体力最少,并输出这个最小的体力耗费值。

例如有 3 种果子,数目依次为 1,2,9。可以先将 1、2 堆合并,新堆数目为 3,耗费体力为 3。接着,

将新堆与原先的第三堆合并,又得到新的堆,数目为 12,耗费体力为 12。所以多多总共耗费体力=3+12=15。

可以证明 15 为最小的体力耗费值。

输入

输入文件fruit.in包括两行,第一行是一个整数n(1 <= n <= 10000),表示果子的种类数。第二行

包含n个整数,用空格分隔,第i个整数ai(1 <= ai <= 20000)是第i种果子的数目。

输出

输出文件fruit.out包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这

个值小于 

15678423514411.png

样例

输入

3 
1 2 9

输出

15

提示

【数据规模】

对于 30%的数据,保证有 n <= 1000;

对于 50%的数据,保证有 n <= 5000;

对于全部的数据,保证有 n <= 10000。

来源

一本通

时间限制 1 秒
内存限制 128 MB
讨论 统计
上一题 下一题