Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路。道路被用来连接N个牧场,牧场被连续地编号为1到N。每一个牧场都是一个奶牛的家。FJ计划除去P条道路中尽可能多的道路,但是还要保持牧场之间 的连通性。你首先要决定那些道路是需要保留的N-1条道路。第j条双向道路连接了牧场Sj和Ej(1 <= Sj <= N; 1 <= Ej <= N; Sj != Ej),而且走完它需要Lj的时间。没有两个牧场是被一条以上的道路所连接。奶牛们非常伤心,因为她们的交通系统被削减了。你需要到每一个奶牛的住处去安慰她们。每次你到达第i个牧场的时候(即使你已经到过),你必须花去Ci的时间和奶牛交谈。你每个晚上都会在同一个牧场(这是供你选择的)过夜,直到奶牛们都从悲伤中缓过神来。在早上起来和晚上回去睡觉的时候,你都需要和在你睡觉的牧场的奶牛交谈一次。这样你才能完成你的交谈任务。假设Farmer John采纳了你的建议,请计算出使所有奶牛都被安慰的最少时间。
第1行包含两个整数N和P。
接下来N行,每行包含一个整数Ci。
接下来P行,每行包含三个整数Sj, Ej和Lj。
输出一个整数, 所需要的总时间(包含和在你所在的牧场的奶牛的两次谈话时间)。
5 7 10 10 20 6 30 1 2 5 2 3 5 2 4 12 3 4 17 2 5 15 3 5 6
176
数据规模与约定
5 <= N <= 10000,N-1 <= P <= 100000,0 <= Lj <= 1000,1 <= Ci <= 1,000。
蓝桥杯